Verification Reports 
- Full Report Best viewed on desktop -
- Limited report on mobile -

  • Lab test on small suitcase version constructed specifically for verification reporting.

  • Using industry standard test equipment.

  • Data supported by CCTV footage of each test.

Recommended!

  Brief overview of stage 1 & 2  

Full View.jpg

Click on image to explore test setup components

Data Lodging of Test Dated 26 July, 2019 | 300% I/P to O/P Power Efficiency  

Performance.jpg

Data Lodging of Test Dated 30 July, 2019 | 300% to 400% I/P to O/P Efficiency. 

Demonstrating higher performance when galvanic energy does more work than the input electrical energy. 

performance 3007.jpg
Data Lodging of Test Dated 13 Aug, 2019 | 350% | Switch Between Self-power Mode. Includes self-sustaining ability with no external input power. Also periods of generating additional power. 
1308 performance.jpg
Data Lodging of Test Dated 06 Sep, 2019 | Average 400% Efficiency over 1 Hour then Self-Sustaining AND Generating Additional Power for 2 hour Sample Time.  
0609 IP vs OP Power.jpg
How it work?
 
Follow as we walk you through a simplified performance verification test setup along with new, in-depth  explanation of how the energy gain is achieved and the science behind the technology.
Click Video to View
GEE1.png
Icon Web 1010.png
Click Video to View
View a simplified 7 hour self-sustaining 40Wh power generation demonstration.
An amazing, truly self powering system producing 40Wh of excess  electricity. We ran this demonstration for 7 hours but video is compressed into 22 minutes by fast-motion.
Self Power Mode.PNG
icon5.jpg

Must  View!

Includes witnesses statements
Includes independent assessment 

Stage .2.   Scale-ability

Click Graphs To Expand

Verification Reports For 5Ltr Cell

(2.2x larger than above 2.4L suitcase demo cell)

This report was initiated in order to demonstrate:

  • The scale-ability of the technology.

  • The ability to ramp up/down generation rapidly to match changing energy demands.

Data Lodging of Test: 17 December, 2019 | 400% to 650% Efficiency. 3:45 sample of 24 hour runtime. Note the rapid output change with small input variants. 

17 10 19 Performance.jpg

Must   View!

Powering 120W bank of Floodlights while Self-Powering! 

Click on VIDEO to view verification CCTV footage

Self Power Mode.PNG

Hydrogen Production Gas Flow Rate (Gas-Over-Water Lab Test Method)

SLPM         I/P Volts       I/P  Amps       I/P Watts
1.042              36.0                 1.31                    47.1
1.164               36.5                 1.40                    51.1
1.236               37.5                 1.56                    58.5
1.414               38.8                 1.81                    70.2
1.650               39.5                 1.98                   78.2

Includes independent assessment 
floodlights.jpg
Latest Improvements to the Ion Accelerator delivers Greater Efficiency and Production!
Test Model lab results:      Sep 2021

Hydrogen Production Gas Flow Rate (Gas-Over-Water Lab Test Method)

SLPM         I/P Volts       I/P  Amps       I/P Watts
 0.173               10                     1.0                      10

Apply the scale to the 5L cell:
 3.806              39.0                  1.89                    74
 

Reducing the galvanic metal average decay time:

    From                       To

   40 days                    71 to 114 days (accurate measurements) 

Reducing the galvanic metal replacement cost: 

   From                         To

  $0.34/kg/H2                $0.20/kg/H2 

Simple 2 hour metal rod replacement process.

Boosting the performance of the above verification test 5L cell:

   From                       To

   550%                       925% 

And the output energy 

   From                       To

  220 Watts                 684 Watts 

Boosting the calculated range capacity of a 230L (cubic meter) cell to:

   O/P H2        I/P Electricity

    1.8 kg/h            1.0 kWh

    6.0 kg/h            2.2 kWh

    50  kg/h            18  kWh

Production increases with scale.

News Update: H2IL Redefine their technology
Why?
(Click to view)

Stage .3.   5kWh 24/7 Self-Sustaining Micro Power Generation 

This installation will generate around 1kg of hydrogen per hour and convert it to electricity through fuel cells. A 1kWh fuel cell will convert a small portion of the generated hydrogen back to electricity, provide ALL the electricity needed to power the Ion Accelerator and running equipment. Another 5kWh fuel cell will be grid tied to sell electricity to the grid. Excess H2 will be vented or used to demonstrate the gas purity.

The purpose of this exercise is to obtain independent monthly power statements, showing power generated non-stop, day and night over the catalyst metal life period.

Scheduled for mid 2022

How the Lab Test is Performed
Power 
Supply
Computer with Graph

Electricity

Galvanic
Electrolyser

Hydrogen

PEM Hydrogen
Fuel Cell
Efficiency Test Method

Electricity

Electronic
Load
Computer with Graph

The tests are performed using a PEM Fuel Cell (PEMFC) rather than flow meters for the following reasons:

1/ With the PEMFC conversion back to electricity, a true and sure level of usable energy performance can be obtained real-time, with no chance of error and no complex gas energy calculations required.

2/ The PEMFC conversion of hydrogen back to electricity enables a self-powering, self-sustaining, demonstration.

 

3/ A sure test for pure hydrogen. If oxygen or any other gasses were to be present in the generated supply, the PEMFC will respond erratically, causing rapid rises and falls in the output voltage that would be detectable on the real time interface and data lodgings. A flow meter, on the other hand, will respond to such conditions with a very high, inaccurate flow rate which could cause the viewer to assume impurity as the reason for a high performance.

4/ Proves that acidic chemicals are not used to boost the hydrogen generation. Any acidic fumes in the gas supply will not only cause very erratic performance for the PEMFC but will destroy it.

GEE frame.png

The small 2.4L suitcase cell used in the efficiency verification testing and demonstration. 

This demo version of the Galvanic Enhanced Electrolyser (GEE) used for verification lab tests does not have the external electrolyte circulation system needed for constant 24/7 runtime. A maximum of only 24 hours runtime was achieved. 

 

The large scale full system runs continuously: 

Last Update:
Oct 2021

Stage .1.   Efficiency

Click Graphs To Expand